Welcome to COA 2021!
A NEW OCEANS!!
A Toast to the Future! . . . Here’s to the Good Times Ahead!!
Global OCEANS 2020: Singapore-U.S. Gulf Coast
Welcome to COA 2021!
From the Vice President for W&S – A COVID-19 Update
New Year, New Member Opportunities
Marine Debris Indicators: What’s Next? – Workshop Summary Report
From the Vice President for W&S
The Science We Need for the Ocean We Want
Welcome to COA 2020!
Offshore Technology Conference
A Blast from the Past! . . . And a Look at Our Future
OCEANS 2019 Seattle – A Success
Underwater Robot Convention in JAMSTEC 2019
Who’s who in the OES (September 2019)
OCEANS 2019 Marseille
OceanObs’19 Conference, An Ocean of Opportunity
The European Robotics League (ERL) Emergency 2019
Jean-Pierre Hermand MEMORIAL Session – OCEANS 2019 Marseille, France
Underwater Technology 2019 (UT’19) Kaohsiung, Taiwan, 16–19 April, 2019
“FROM LITTLE THINGS, BIG THINGS GROW” (Paul Kelly, 1992) IEEE/OES 12th CWTMA Workshop, San Diego 10–13 March 2019
Presenting the European Robotics League (ERL) Emergency 2019
OCEANS 2019 Seattle
Suleman Mazhar has been working as a professor in Information & Communication Engineering at Harbin Engineering University (China) since July 2019. He did PhD from Tokyo University (Japan) and postdoctorate from Georgetown University (Washington DC, USA). He had BS-CS from FAST-NUCES (Lahore) and MS from GIK Institute (Pakistan). He is TYSP young scientist fellow (Ministry of Science & Technology China) and have won several research grants from international organizations such as DAAD (Germany), ICIMOD (Nepal), NRPU (Higher Education Commission Pakistan), WWF (Worldwide Fund for Nature) Pakistan. His research focus is deep learning and signal processing applications for environmental monitoring, with particular focus on underwater acoustics, and marine mammal conservation. He is a reviewer for professional journals such as Journal of Acoustical Society (America), IEEE Journal of Oceanic Engineering, IEEE Sensors Journal, Applied Acoustics, IEEE Transactions on Intelligent Transportation Systems.
Peng Ren is a full professor with the College of Oceanography and Space Informatics, China University of Petroleum (East China). He is the director of Qingdao International Research Center for Intelligent Forecast and Detection of Oceanic Catastrophes. He received the K. M. Scott Prize from the University of York, the Natural Science award (first rank) from China Institute of Electronics, and the Eduardo Caianiello Best Student Paper Award from 18th International Conference on Image Analysis and Processing as one co-author. He has served as an associate editor of IEEE Transactions on Geoscience and Remote Sensing.
Mohd Rizal Arshad is a full professor at the School of Electrical and Electronic Engineering at Universiti Sains Malaysia (USM), Malaysia, where he specializes in ocean robotics technology and intelligent system. He received his B.Eng. in Medical Electronics & Instrumentation and PhD in Electronic Engineering from University of Liverpool, UK in 1994 and 1999, respectively. He completed his MSc. in Electronic Control Engineering from the University of Salford, UK in Dec 1995. He has supervised many postgraduate students and published extensively in local and international publications. He is a senior member of the IEEE, and was awarded IEEE OES Presidential Award in 2019.
Itzik Klein is an Assistant Professor, heading the Autonomous Navigation and Sensor Fusion Lab, at the Charney School of Marine Sciences, Hatter Department of Marine Technologies, University of Haifa. He is an IEEE Senior Member and a member of the IEEE Journal of Indoor and Seamless Positioning and Navigation (J-ISPIN) Editorial Board. Prior to joining the University of Haifa, he worked at leading companies in Israel on navigation topics for more than 15 years. He has a wide range of experience in navigation systems and sensor fusion from both industry and academic perspectives. His research interests lie in the intersection of artificial intelligence with inertial sensing, sensor fusion, and autonomous underwater vehicles.
John R. Potter (IEEE M’94, SM’02, F’18) graduated in the previous century with a joint honours Mathematics and Physics Degree from Bristol and a PhD. in Glaciology and Oceanography from Cambridge, UK studying Antarctic ice mass balance, where he spent four consecutive summers. This work helped underscore the non-linear fragility of polar ice to climate change and led to him receiving the Polar Medal from Queen Elizabeth II in 1988.
Dr. Potter has 45 years’ experience in marine and glaciological research, holding academic University positions (NUS, NTNU), research institute roles (BAS, SIO, NUS, NTNU) and NATO research and senior management positions (Saclant ASW Centre, NURC, CMRE) across Europe, the US and Asia. He is now a Full Professor at NTNU in Norway. His scientific specialisations are glaciology, polar oceanography, acoustics, ambient noise, marine mammals, autonomous vehicles, machine intelligence, communications, distributed sensing networks, ocean advocacy and environmental conservation.
Frustrated by two decades of failure to promote ecosystem and climate awareness, in 2004 he took a 14-month ‘seabbatical’ with his family to circumnavigate the Indian Ocean by sailboat on a sponsored voyage of research, public outreach and education with a focus on the increasing degradation of the marine environment and mankind’s failed stewardship of this unique and beautiful blue planet.
Dr. Potter has 10 years’ experience facilitating, coaching & training personal performance & leadership skills, change-management, team building, relationship management & corporate strategy. Dr. Potter co-founded the Tropical Marine Science Institute and Founded the Acoustic Research Laboratory in the National University of Singapore, leading it from inception, through growth, to a sustainable internationally-recognized centre of excellence.
Dr. Potter has ~170 peer-reviewed publications with ~3400 citations, h-index = 26, i10-index = 66. He is a Fellow of the IEEE and MTS, International Fellow of the Explorers Club, Associate Editor for the IEEE Journal of Oceanic Engineering, Lifetime Member Marine Mammal Society, PADI Master Scuba Diver Trainer, TDI Nitrox and ECC Rebreather Diver and sometime General Aviation Pilot (Gliders and Gyrocopters).
It is no longer true that he neither owns nor operates a television.
Here is how to get your paper copies of the OES Beacon in the future.
1. OES members need to contact the IEEE Contact Center at 1-800-678-4333 or 1-732-981-0060- Monday thru Friday- 8:00 AM- 4:30 PM EST.
2. Or . . . send the IEEE Contact Center an email at contactcenter@ieee.org with your name, IEEE member number and your request to receive your paper copy of the OES Beacon.
A new initiative has been added to the mission of the IEEE Oceanic Engineering Standards Committee. It recognizes that the systems engineering and oceanic engineering missions are in symbiosis with each other and that there will be close cooperation now between the IEEE Oceanic Engineering Society Standards Committee and the IEEE Systems Council Standards Committee. More details appear at: https://ieeeoes.org/technical-activities/standards-activities/“
Nick is a Visiting Fellow at the UK National Oceanographic Center, Southampton His nomination was endorsed by the Underwater Acoustics Technology Committee. He had worked as a Research Associate and Lecturer at University of Birmingham and has been working as a Research Scientist at the Applied Research Laboratory, University of Texas, Austin. He has also served as a Program Officer at the Office of Naval Research Global. He is a senior member of IEEE (OES) and a Fellow of Acoustical Society of America (ASA). Nick has also been serving as Assoc. Editor for IEEE JoE and JASA. He is widely acknowledged for his expertise are seabed acoustics, parametric array modeling, sonar beamformer, underwater signal processing.
Maurizio Migliaccio (M’91-SM’00-F’17) is Full professor of Electromagnetics at Università di Napoli Parthenope (Italy) and was Affiliated Full Professor at NOVA Southeastern University, Fort Lauderdale, FL (USA). He has been teaching Microwave Remote Sensing since 1994. He was visiting scientist at Deutsche Forschungsanstalt fur Lüft und Raumfahrt (DLR), Oberpfaffenhofen, Germany. He was member of the Italian Space Agency (ASI) scientific committee. He was member of the ASI CosmoSkyMed second generation panel. He was e-geos AdCom member. He was Italian delegate of the ESA PB-EO board. He was Member of South Africa Expert Review Panel for Space Exploration. He serves as reviewer for the UE, Italian Research Ministry (MIUR), NCST, Kazakhstan and Hong Kong Research board. He lectured in USA, Canada, Brazil, China, Hong Kong, Germany, Spain, Czech Republic, Switzerland and Italy. He was Italian delegate at UE COST SMOS Mode Action. He is listed in the Italian Top Scientists. He is an IEEE Trans. Geoscience and Remote Sensing AE, International Journal of Remote Sensing AE, and was IEEE Journal of Oceanic Engineering AE Special Issue on Radar for Marine and Maritime Remote Sensing, IEEE JSTARS AE of the Special Issue on CosmoSKyMed, Member of the Indian Journal of Radio & Space Physics Editorial board. His main current scientific interests cover SAR sea oil slick and man-made target monitoring, remote sensing for marine and coastal applications, remote sensing for agriculture monitoring, polarimetry, inverse problems for resolution enhancement, reverberating chambers. He published about 160 peer-reviewed journal papers on remote sensing and applied electromagnetics.
DISTINGUISHED LECTURER TOPICS:
Synthetic Aperture Radar for oil spill observation
Marine oil pollution monitoring is a topic of great applicative and scientific relevance. Use of remotely sensed measurements is of special interest and, in particular, the SAR because of its almost all-weather and all-day imaging capability at fine spatial resolution is the most effective tool. Conventional single-polarization SAR oil spill monitoring techniques are limited in their capability to detect oil slicks since they strongly rely on suitable thresholds, training samples, and ancillary information. Hence, an expert image analyst is due. The launch of a number of polarimetric SAR missions, along with the understanding of the peculiar physical mechanisms governing the scattering by an oil slick, led to a new paradigm (known as physical processing) that fostered a set of polarimetric algorithms particularly robust and efficient. Hence, suitable polarimetric models that exploit the departure from the slick-free sea Bragg scattering have been developed to effectively address oil slick monitoring. A set of polarimetric features extracted following such electromagnetic models have been proved to be reliable for oil slick monitoring. Polarimetric SAR observations led to a significant improvement in sea oil slick observation since they allow distinguishing oil slicks from a broad class of lookalikes in an unsupervised way.
Wind speed estimation by Synthetic Aperture Radar
The oceans cover over 70% of the Earth’s surface, carrying out about 50% of global primary production and hosting the widest biodiversity on the planet. Ocean monitoring plays a key role in all World Meteorological Organization (WMO) programs. Within such a framework, sea-surface wind field is attracting growing attention from engineers and in order to boost the sustainable development by exploiting new “clean” energy sources (e.g., to plan and implement offshore wind energy farms). In this seminar the SAR, a microwave narrowband coherent imaging system, is analyzed as sensor for sea surface wind estimation.
The critical analysis of three general procedures is presented along with a physical background.
Man-made targets at sea observation by polarimetric SAR
Sea man-made targets usually appear as bright spots over a dark background, this is due to some concurring physical factor: the large size of the target compared to the SAR spatial resolution, the metallic nature of the target that ensures a strong electromagnetic return and a low return of the sea surface that occurs in low-to-moderate wind regimes. When some of the aforementioned physical hypothesis do not occur the detection of man-made targets becomes a much more challenging task. In the seminar a physical-driven approach is presented along with a number of examples. In this seminar the supporting role of SAR polarimetry and physical processing for man-made target at sea detection is illustrated.
Tamaki Ura is Professor Emeritus of the University of Tokyo, where he is a world leader in the development of Autonomous Underwater Vehicles.
He has developed various types of Autonomous Underwater Vehicles (AUVs) and related application technologies including navigation methods, a new sensing method using a chemical sensor, precise seafloor mapping methods, a precise seabed positioning system with a resolution of a few centimeters, a new sensing system of the thickness of cobalt-rich crust; and more. He has shown, by using these technologies that AUVs are practicable and valuable tools for deep-sea exploration.
Professor Ura has dedicated himself to the activities of international societies by establishing IEEE/OES Japan Chapter, where he served as its first chair from 1995 to 2000. He organized the International Symposium on Underwater Technology: UT’98, UT2000, UT’02, UT’07, UT’11, UT’13 in Tokyo and UT’04, UT’19 in Taipei, UT’09 in Wuxi, UT’17 in Busan and UT’15 in Chennai under the IEEE/OES Japan Chapter, and realized the international symposium on OCEANS/Techno-Ocean 2004, Kobe in November 2004. This was the first OCEANS conference held in Asia.
He has contributed on ocean related themes not only for the academic audiences but also for the public. He worked as a Cabinet Councillor for The Headquarters of Ocean Policy of Japanese Government from 2007 to 2018. He was a Commissioned Judge of the High Marine Accidents Inquiry Agency from 1984 to 2008, and he was the chairman of the Ocean Technology Committee of the Society of Naval Architects of Japan from 1998 to 2000.
After retiring from the University of Tokyo, he has been engaged in R&D of field robots such as beach cleaning robots and tomato collection robots. In addition, he organized a team which investigated the sunken ship, and discovered 27 submarines such as I-47, I-58 of Imperial Japanese Navy and U-boat U-511(Ro-500), and the passenger ship “Taiyo Maru”.
Based on these activities, he has received many awards;
2019: Distinguished service award (Robotics and Mechatronics Division) from the Japan Society of Mechanical Engineers (Japan)
2016: The Fujisankei Communications Group Award of the 25th Grand Prize for the Global Environment Awards from Fujisankei Communications Group (Japan)
2013: Technical Achievement award (Robotics and Mechatronics Division) from the Japan Society of Mechanical Engineers (Japan)
2012: AUV “TUNA SAND” was awarded the 5th Robot Award from METI (Japan)
2010: IEEE Oceanic Engineering Society Distinguished Technical Achievement Award
2007: Nominated as IEEE Fellow, for contributions to autonomous underwater vehicle technologies.
2006: Distinguished Service Award from IEEE/OES Japan Chapter (Japan)
2000: Award from Agency for Science and Technology (Japan)
1999: Award from the Japan Society of Mechanical Engineers (Japan)
1998: Award from High Automation Technology Association (Japan)
1995 and 1997: Awards on Invention from the Society of Naval Architects of Japan (Japan)
1982: Houkou Award on the significant contributions to safety of moored ship (Japan)
1979: Award from the Society of Naval Architects of Japan (Japan)
Donna Kocak has had an outstanding career in defense and scientific projects developing and applying solutions in subsea optics, imaging and robotics. She graduated with an M.Sc in Computer Science in 1997 from the University of Central Florida; an MBA in 2008 from the University of Florida; and M.Sc in Industrial Engineering in 2011 from the University of Central Florida. She is currently a Senior Scientist, Advanced Concepts Engineering, and Fellow at the Harris Corporation in Melbourne, Florida, where she has developed novel optical imaging and communication solutions for under-sea defense and scientific projects. Prior to 2008 Donna Kocak was Founder and President of Green Sky Imaging, LLC (GSI) who developed laser/video photogrammetry software for underwater inspection and survey. Her earlier career positions were with Naval Training Systems Center, Florida; Harbor Branch Oceanographic Institution, Florida; eMerge Interactive; and the Advanced Technologies Group in Florida.
Her raft of Honors and Awards validate her reputation as a leader in her profession with a clear ability to develop innovation seeding projects and new maritime business. She has been invited to speak to a wide range of audiences from school groups to defense think-tanks, on topics from undersea optics technologies to over-views of ocean engineering.
She has over 75 publications which follow a development of her interests from technology topics earlier to more recent papers on the state of technology and the future demands in subsea optics.
Honors and Professional Engagements:
Harris Technical Fellow, 2020
HARRIS Building a Legacy Award for demonstrating pride and accountability by developing next generation of talent through leadership and mentoring (2018)
Elected President of the Marine Technology Society (MTS), 2017-2018
Invited USA Science & Engineering Nifty Fifty Speaker, 2015-2016
SWE Space Coast Outstanding Woman Engineer Award, 2012
Appointed to FL Tech OE & UCF EECS Industry Advisory Boards, 2011
Delegated Senior Member of IEEE Oceanic Engineering Society, 2010
HARRIS Golden Quill (2009, 2016) and Industry Recognition (2012) Awards
Founded/Appointed Chair of the MTS Ocean Observing Systems Committee (2008 – 2015); & Chair of Underwater Imaging Committee (2004-2008)
Appointed to MTS Journal Editorial Board (2008 – Present); MTSJ Guest Editor of 10 special issues including 4 State of Technology volumes (2008 – 2019)
Member of NDIA, MTS, IEEE/OES, SWE and Upsilon Phi Epsilon Honor Society
John Potter has a Joint Honours degree in Mathematics and Physics from Bristol University in the UK and a PhD in Glaciology and Oceanography from the University of Cambridge on research in the Antarctic, for which he was awarded the Polar Medal in 1988. John has worked on polar oceanography, underwater acoustics, ambient noise (including imaging), marine mammals, communications, IoUT, autonomous vehicles and strategic development. He has 40 years’ international experience working at the British Antarctic Survey in the UK, NATO in Italy, SIO in California, NUS in Singapore and most recently at NTNU in Norway. John is a Fellow of the IEEE and MTS, an Associate Editor for the IEEE Journal of Oceanic Engineering, IEEE OES Distinguished Lecturer, PADI Master Scuba Diver Trainer & an International Fellow of the Explorer’s Club.
John is a ‘big-picture’ visionary academic professional with experience encompassing strategic business development and award-winning research, including a National Defence Technology Prize in 2006 and the NATO Scientific Achievement Award in 2018. He has a proven track record of establishing research facilities that exemplify standards of excellence, having founded the Acoustic Research Laboratory and co-founded the Tropical Marine Science Institute in Singapore, and is a recognised educational leader with coaching, facilitating and training experience. He is an effective verbal/written communicator, experienced in managing change, building new opportunities, advocating for universities/organisations and interfacing with multi-national governmental, academic, military, and industrial organisations, as demonstrated by his pioneering leadership to establish the first digital underwater communications standard, ‘JANUS’. He is extensively internationally published, with over 2,500 citations. John has also sailed with his family across the Atlantic, Pacific and Indian Oceans, clocking 50,000+ nautical miles of blue-water cruising over a period of 30 years in pursuit of environmental awareness and marine conservation.
Among his achievements are:
- Pioneering work on the impact of climate change on the Antarctic, for which he was awarded the Polar Medal by H.M. Queen Elizabeth II, with his publications from the 80’s still being cited today.
- Leading the project that developed the first Ambient Noise Imaging system (ADONIS), producing passive acoustic video images of silent objects in real time, for which he received an ASA award for best paper.
- Expedition leader for a 10,000 n.m. circumnavigation of the Indian Ocean by sailboat in support of education, public outreach and marine research, leading to publication of the first measurements of persistent organic pollutants in the Indian Ocean in 30 years.
- Leading the project that built the first 2-D digital Ambient Noise Imaging array (ROMANIS), resulting in a National Defence Technology Prize.
- Leading the team that developed the first digital underwater communications standard ‘JANUS’, now adopted by 28 nations and which resulted in the NATO Scientific Achievement Award
- Conceived and wrote the draft Letter of Intent, now adopted as a formal memorandum, signed in October 2018 by Defence Ministers of 13 NATO nations, to collaborate on Maritime Unmanned Systems.
- Founder of the Acoustic Research Laboratory (ARL) in Singapore
- Educational leader and award-winning instructor/trainer with a history of improving instruction methods including use of new technologies and nurturing innovation through experiential learning.
The following selected publications illustrate his diverse experience:
- Gordon, J., Gillespie, D., Potter, J.R., Frantzis, A, Simmonds, M.P., Swift, R., et. al. (2003) A review of the effects of seismic surveys on marine mammals. Marine Technology Society Journal, 37, (4), 16-34. (332 citations)
- Chitre, M., Potter, J.R., Ong, S.H., (2006) Underwater Acoustic Signal Processing-Optimal and Near-Optimal Signal Detection in Snapping Shrimp Dominated Ambient Noise. IEEE Journal of Oceanic Engineering 31 (2), 497-503. (161 citations)
- Potter, J.R., Paren, J.G. (1985) Interaction between ice shelf and ocean in George VI Sound, Oceanology of the Antarctic Continental Shelf 43, 35-58. (108 citations)
- Potter, J.R., Mellinger, D.K., Clark, C.W. (1994) Marine mammal call discrimination using artificial neural networks. The Journal of the Acoustical Society of America 96 (3), 1255-1262. (95 citations)
- Petrioli, C., Petroccia, R., Potter, J.R., Spaccini, D. (2015) The SUNSET framework for simulation, emulation and at-sea testing of underwater wireless sensor networks. Ad Hoc Networks, 34, 224-238. (82 citations)
- Potter, J.R., Alves, J., Green, D., Zappa, G., Nissen, I., McCoy K. (2014) The JANUS underwater communications standard. Underwater Communications and Networking (80 citations)
- Epifanio, C.L., Potter, J.R., Deane, G.B., Readhead, M.L., Buckingham, M.J. (1999) Imaging in the ocean with ambient noise: the ORB experiments. The Journal of the Acoustical Society of America 106 (6), 3211-3225. (66 citations)
- Petrioli, C., Petroccia, R., Potter, J.R. (2011) Performance evaluation of underwater mac protocols: From simulation to at-sea testing. IEE/MTS OCEANS 2011 Spain, 1-10. (56 citations)
- Wurl, O., Potter, J.R., Obbard, J.P., Durville, C. (2006) Persistent organic pollutants in the equitorial atmosphere over the open Indian Ocean, Environmental Science and Technology, 40(5) 1454-1461 (53 citations)
- Potter, J.R. (1994) Acoustic imaging using ambient noise: Some theory and simulation results. Journal of the Acoustical Society of America 95(1) 21-33. (47 citations)
Dr. James V. Candy is the Chief Scientist for Engineering and former Director of the Center for Advanced Signal & Image Sciences at the University of California, Lawrence Livermore National Laboratory. Dr. Candy received a commission in the USAF in 1967 and was a Systems Engineer/Test Director from 1967 to 1971. He has been a Researcher at the Lawrence Livermore National Laboratory since 1976 holding various positions including that of Project Engineer for Signal Processing and Thrust Area Leader for Signal and Control Engineering. Educationally, he received his B.S.E.E. degree from the University of Cincinnati and his M.S.E. and Ph.D. degrees in Electrical Engineering from the University of Florida, Gainesville. He is a registered Control System Engineer in the state of California. He has been an Adjunct Professor at San Francisco State University, University of Santa Clara, and UC Berkeley, Extension teaching graduate courses in signal and image processing. He is an Adjunct Full-Professor at the University of California, Santa Barbara. Dr. Candy is a Fellow of the IEEE and a Fellow of the Acoustical Society of America (ASA) and elected as a Life Member (Fellow) at the University of Cambridge (Clare Hall College). He is a member of Eta Kappa Nu and Phi Kappa Phi honorary societies. He was elected as a Distinguished Alumnus by the University of Cincinnati. Dr. Candy received the IEEE Distinguished Technical Achievement Award for the “development of model-based signal processing in ocean acoustics.” Dr. Candy was selected as a IEEE Distinguished Lecturer for oceanic signal processing as well as presenting an IEEE tutorial on advanced signal processing available through their video website courses. He was nominated for the prestigious Edward Teller Fellowship at Lawrence Livermore National Laboratory. Dr. Candy was awarded the Interdisciplinary Helmholtz-Rayleigh Silver Medal in Signal Processing/Underwater Acoustics by the Acoustical Society of America for his technical contributions. He has published over 225 journal articles, book chapters, and technical reports as well as written three texts in signal processing, “Signal Processing: the Model-Based Approach,” (McGraw-Hill, 1986), “Signal Processing: the Modern Approach,” (McGraw-Hill, 1988), “Model-Based Signal Processing,” (Wiley/IEEE Press, 2006) and “Bayesian Signal Processing: Classical, Modern and Particle Filtering” (Wiley/IEEE Press, 2009). He was the General Chairman of the inaugural 2006 IEEE Nonlinear Statistical Signal Processing Workshop held at the Corpus Christi College, University of Cambridge. He has presented a variety of short courses and tutorials sponsored by the IEEE and ASA in Applied Signal Processing, Spectral Estimation, Advanced Digital Signal Processing, Applied Model-Based Signal Processing, Applied Acoustical Signal Processing, Model-Based Ocean Acoustic Signal Processing and Bayesian Signal Processing for IEEE Oceanic Engineering Society/ASA. He has also presented short courses in Applied Model-Based Signal Processing for the SPIE Optical Society. He is currently the IEEE Chair of the Technical Committee on “Sonar Signal and Image Processing” and was the Chair of the ASA Technical Committee on “Signal Processing in Acoustics” as well as being an Associate Editor for Signal Processing of ASA (on-line JASAXL). He was recently nominated for the Vice Presidency of the ASA and elected as a member of the Administrative Committee of IEEE OES. His research interests include Bayesian estimation, identification, spatial estimation, signal and image processing, array signal processing, nonlinear signal processing, tomography, sonar/radar processing and biomedical applications.
Kenneth Foote is a Senior Scientist at the Woods Hole Oceanographic Institution. He received a B.S. in Electrical Engineering from The George Washington University in 1968, and a Ph.D. in Physics from Brown University in 1973. He was an engineer at Raytheon Company, 1968-1974; postdoctoral scholar at Loughborough University of Technology, 1974-1975; research fellow and substitute lecturer at the University of Bergen, 1975-1981. He began working at the Institute of Marine Research, Bergen, in 1979; joined the Woods Hole Oceanographic Institution in 1999. His general area of expertise is in underwater sound scattering, with applications to the quantification of fish, other aquatic organisms, and physical scatterers in the water column and on the seafloor. In developing and transitioning acoustic methods and instruments to operations at sea, he has worked from 77°N to 55°S.
Relatively recent publications have been on the subjects of range compensation for backscattering measurements in the difference-frequency nearfield of a parametric sonar; discriminating between the nearfield and the farfield of acoustic transducers; standard-target calibration of active sonars used to measure scattering. Some other recent, collaborative publications have concerned acousto-optic effect compensation for optical determination of the normal velocity distribution associated with acoustic transducer radiation, and performance prediction of a dual-baseline radar or sonar interferometer based on a Vernier critical value concept.
René Garello, professor at Télécom Bretagne, Fellow IEEE, co-leader of the TOMS (Traitements, Observations et Méthodes Statistiques) research team, in Pôle CID of the UMR CNRS 3192 Lab-STICC.
René Garello was born in 1953. He received the Ph.D. degree in Signal Processing at the Institut National Polytechnique de Grenoble (INPG) in 1981. From 1982 to 1984 he worked as a Research Associate at Aeronomy Lab, National Oceanic and Atmospheric Administration (NOAA) at Boulder, Colorado (USA). He joined the Ecole Nationale Supérieure des Télécommunications de Bretagne (ENST Bretagne), Brest, France in 1985. In 1988 he became Professor in this engineering school in the field of signal processing and image processing and in 1995, Prof. Garello obtained his Habilitation (HDR; Habilitation to Supervise Research).
Prof. Garello was an elected OES AdCom member from 1999 to 2001, from 2003 to 2005 and in 2005 for a new three year term. In the beginning of 2001, he headed the Committee on Conference Policies (CoCoPo) which was in charge of defining a new set of Conference Policies and Procedures in order to insure continuity between the successive OCEANS conferences. This committee jointly held with MTS members defined several new approaches and came up with the concept of two Oceans-a-year (every year in Northern America, every other odd year in Europe and every other even year in Asia-Pacific). In order to implement this plan a new committee was formed: the Joint Oceans Advisory Board or JOAB, of which Prof. Garello is the co-chair.
Prof. Garello was the General Chairman of the first OCEANS of the new Two-Oceans-a-year concept: OCEANS’05 held in Brest, France in June 2005. In 2005, he was elected Vice-President Conference Operations and then re-elected in 2006 and 2008. He was elevated to the grade of Fellow of the IEEE, class of 2006, “for contributions to signal processing applied to remote sensing of the ocean”. He received the OES Service Awards in 2006 for developing and implementing the two OCEANS conference policy.
Prof. Garello has authored or co-authored more than 40 papers, a hundred and thirty conference communications and three books.
Prof. Garello is also an active member of the IEEE/GRS (Geoscience and Remote Sensing) Society. His main research interests lie in Remote Sensing, 2D signal processing, statistical and spectral analysis applied to ocean surface features detection and characterization. Prof. Garello has been active in GEO and participated in the 2005 Plenary, organized a GEOSS workshop in Corte in 2006 in addition to his participation with the IEEE Committee on Earth Observation.
Professor Mal Heron is Adjunct Professor in the Marine Geophysical Laboratory at James Cook University in Townsville, Australia, and is CEO of Portmap Remote Ocean Sensing Pty Ltd. His PhD work in Auckland, New Zealand, was on radio-wave probing of the ionosphere, and that is reflected in his early ionospheric papers. He changed research fields to the scattering of HF radio waves from the ocean surface during the 1980s. Through the 1990s his research has broadened into oceanographic phenomena which can be studied by remote sensing, including HF radar and salinity mapping from airborne microwave radiometers . Throughout, there have been one-off papers where he has been involved in solving a problem in a cognate area like medical physics, and paleobiogeography. Occasionally, he has diverted into side-tracks like a burst of papers on the effect of bushfires on radio communications. His present project of the Australian Coastal Ocean Radar Network (ACORN) is about the development of new processing methods and applications of HF radar data to address oceanography problems. He is currently promoting the use of high resolution VHF ocean radars, based on the PortMap high resolution radar.
Hanu Singh graduated B.S. ECE and Computer Science (1989) from George Mason University and Ph.D. (1995) from MIT/Woods Hole.He led the development and commercialization of the Seabed AUV, nine of which are in operation at other universities and government laboratories around the world. He was technical lead for development and operations for Polar AUVs (Jaguar and Puma) and towed vehicles(Camper and Seasled), and the development and commercialization of the Jetyak ASVs, 18 of which are currently in use. He was involved in the development of UAS for polar and oceanographic applications, and high resolution multi-sensor acoustic and optical mapping with underwater vehicles on over 55 oceanographic cruises in support of physical oceanography, marine archaeology, biology, fisheries, coral reef studies, geology and geophysics and sea-ice studies. He is an accomplished Research Student advisor and has made strong collaborations across the US (including at MIT, SIO, Stanford, Columbia LDEO) and internationally including in the UK, Australia, Canada, Korea, Taiwan, China, Japan, India, Sweden and Norway. Hanu Singh is currently Chair of the IEEE Ocean Engineering Technology Committee on Autonomous Marine Systems with responsibilities that include organizing the biennial IEEE AUV Conference, 2008 onwards. Associate Editor, IEEE Journal of Oceanic Engineering, 2007-2011. Associate editor, Journal of Field Robotics 2012 onwards.
Milica Stojanovic graduated from the University of Belgrade, Serbia, in 1988, and received the M.S. and Ph.D. degrees in electrical engineering from Northeastern University in Boston, in 1991 and 1993. She was a Principal Scientist at the Massachusetts Institute of Technology, and in 2008 joined Northeastern University, where she is currently a Professor of electrical and computer engineering. She is also a Guest Investigator at the Woods Hole Oceanographic Institution. Milica’s research interests include digital communications theory, statistical signal processing and wireless networks, and their applications to underwater acoustic systems. She has made pioneering contributions to underwater acoustic communications, and her work has been widely cited. She is a Fellow of the IEEE, and serves as an Associate Editor for its Journal of Oceanic Engineering (and in the past for Transactions on Signal Processing and Transactions on Vehicular Technology). She also serves on the Advisory Board of the IEEE Communication Letters, and chairs the IEEE Ocean Engineering Society’s Technical Committee for Underwater Communication, Navigation and Positioning. Milica is the recipient of the 2015 IEEE/OES Distinguished Technical Achievement Award.
As a Distinguished Lecturer of the IEEE Ocean Engineering Society, Milica is happy to give lectures at varying levels of technical detail in the general area of underwater acoustic communications and networking. The lectures can be tailored to diverse audiences, ranging from general outreach to high-level graduate students and research practitioners with background in digital communications, signal processing or ocean acoustics. Specific lecture topics include the following:
1) Signal processing for acoustic communications (overview of existing systems; methods for synchronization, channel equalization, and diversity combining; experimental results that demonstrate some of the highest bit-rates achieved to-date)
2) Multi-carrier modulation/detection for acoustic channels (overview of the basic concepts of multi-carrier signaling; dealing with the Doppler distortion through dedicated signal processing methods; experimental demonstrations)
3) Statistical characterization of underwater acoustic communication channels (a discussion of general properties of acoustic communication channels and fundamental differences from terrestrial radio channels, followed by the description of recently developed statistical models and their experimental verification; implications for signal processing)
4) Multiple access in underwater acoustic systems (accommodating multiple users transmitting at the same time and in the same frequency band; cellular architectures for acoustic systems)
5) Reliable transmission over acoustic channels (coding for improved link reliability; using the feedback link for efficient power and rate control; automatic repeat request methods for achieving full reliability; multicast and broadcast systems)
Dr. Paul C. Hines was born and raised in Glace Bay, Cape Breton. From 1977-1981 he attended Dalhousie University, Halifax, Nova Scotia, graduating with a B.Sc. (Hon) in Engineering-Physics.
He joined the Defence Research Establishment Atlantic (now Defence R&D Canada – Atlantic), Dartmouth, Canada where he researched towed array self-noise. From 1985-1988, he attended the University of Bath, UK where he received his PhD in Physics. His research on acoustic scattering from ocean boundaries earned him the Chesterman Medal from the University for “Outstanding Research in Physics”. Upon returning to DRDC Atlantic in 1989, he joined the Acoustic Countermeasures group to work on acoustic scattering and time spreading. From 1996 until 2003 he led several research groups that focused on experimentation and modeling to support sonar research. Since 2003 he has managed projects in Rapid Environmental Acoustics and Aural Classification for underwater acoustics and is currently Principal Scientist in the Underwater Sensing section at DRDC.
Dr. Hines is a Fellow of the Acoustical Society of America, a member of IEEE, and an Adjunct Professor at Dalhousie University’s Dept. of Graduate Studies. He is a seasoned experimentalist and has been chief scientist for several collaborative international research trials. His present research interests include acoustic scattering, sound speed dispersion in the seabed, vector sensor processing, and the application of aural perception in humans, to target classification in sonar.
Lecture topics:
1. The application of aural perception in humans to active and passive sonar classification.
Humans have a remarkable ability to aurally classify transient acoustic signals – from a dog’s bark to the slamming of a car door. Sonar experts have always relied to some extent on this ability to aurally classify sounds to assist in identification – this includes active sonars, in which an acoustic wave is transmitted and one listens to the received echo from a target, such as a submarine, and passive sonars in which one simply listens for signals of interest, such as a marine mammal call. This begs the questions, “How do humans discriminate between these sounds and can we develop a computer algorithm to do it?” In this presentation, we examine those questions, and present some rather pleasing results from an automatic aural classifier that was applied to active sonar target classification and to passive classification of marine mammal vocalizations.
2. Vector sensors: Over 40 and Still Hot (a Hot Topics lecture given at the 151st Meeting of the Acoustical Society of America)
Acoustic vector sensors and gradient arrays have been in use in underwater acoustics for more than 4 decades so one may wonder why they might be considered a “Hot Topic”. The reason lies in the recent resurgence in their use. This in turn, is due primarily to major advances in engineering and signal processing that have been applied to these devices. Historically, theoretical gains have been difficult to achieve with these sensors due to their susceptibility to uncorrelated noise. That is to say, the very process of making a localized measurement of the vector acoustic field lowers the signal-to-noise ratio, relative to a simple pressure measurement. However, with today’s advances in design, manufacturing, and digital signal processing, high-quality performance can be achieved in a very small package size. Moreover, the current interest in these devices isn’t limited to underwater acoustic applications; rather it extends across a number of technical areas within the acoustics community. This presentation will begin with a gentle introduction to the theoretical foundation and history of these devices. Then some current applications in both underwater and airborne acoustics will be highlighted.
Stefan Williams graduated BASc from The University of Waterloo (1998) in Systems Design Engineering and Ph.D (2002) in Field Robotics from The University of Sydney. His research interests are in the areas of autonomous navigation, high-resolution multispectral stereo photographic imaging and swath mapping to capture 3-D images of the sea floor, AUV planning and machine learning and classification of marine imagery. He works in collaboration with organizations including the Australian Institute for Marine Sciences, CSIRO, the University of Tasmania, TAFI, SARDI and others undertaking AUV surveys of marine habitats around Australia and was appointed head of Australia’s Integrated Marine Observing System (IMOS) Autonomous Underwater Vehicle (AUV) Facility. Collaborates extensively with colleagues at the Woods Hole Oceanographic Institute, MIT, the University of Tokyo, the University of Southampton, the University of Rhode Island, the University of Michigan, St. Andrews University and the University of Hawaii exploring the use of AUV systems in support of studies in marine ecology, archaeology and geoscience.
Rick Spinrad received a BA in Earth & Planetary Sciences from The Johns Hopkins University (1975), and M.S (1978) and Ph.D (1982) in Oceanography from Oregn State University. He is an accomplished researcher in marine environmental studies; demonstrated leadership in design of sophisticated environmental instrumentation; innovator of National Ocean Sciences Bowl, a program for high school students; Successful program manager with significant annual growth in programs of responsibility at both Navy and NOAA; Globally sought public speaker with over 100 speeches and media appearances (print and broadcast including The New York Times, MSNBC, The Washington Post, Huffington Post, USA Today, Discovery Channel, The Weather Channel, BBC); prepared and delivered testimony to Congress and state legislature to increase budgets and improve programs in research and education; established record of program and policy development in economic development (including engagement with venture capital and angel investors)