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Abstract—The size of sound archives collected globally by
the community to monitor cetaceans, including blue whales,
is rapidly increasing. Analyzing these vast amounts of data
efficiently requires reliable automated detection algorithms. Typ-
ically these algorithms focus on a specific call type produced
by a single species. We developed an automatic transcription
algorithm which can identify multiple concurrently calling species
in sound recordings. The algorithm was tested on data containing
series of calls (songs) of Madagascar pygmy blue whales and
series of the 27 Hz tonal unit named ”P-call”. The algorithm
is based on pattern recognition of tonal calls in the time-
frequency domain where (1) segmentation is realized by detection
of tonal signals, (2) features are extracted from their time-
frequency-amplitude information, and (3) classification is realized
by clustering. The classified tonal signals are then used to
reconstruct, separately, the underlying songs. We successfully
trained and tested the algorithm on data (> 4000 annotated calls)
in the Western Indian Ocean and achieved an overall precision
of 97.2% and a recall of 96.9%, respectively.

Index Terms—Passive acoustic monitoring, Signal processing,
Bioacoustics, Blue whale.

I. INTRODUCTION

Passive acoustic monitoring (PAM) has been proven to
be an economical and non-intrusive way of surveying blue
whales [1]. Analysis of large volumes of data resulting from
continuous and long-term monitoring efforts greatly benefits
from the automated detection of target signals. Blue whale
songs, known to be subspecies specific, typically occur below
50 Hz and are described as regularly sequences of tonal units
that can be polychromatic [2]–[4]. The stereotypical nature
of the blue whale songs make them well-suited for automatic
detection.

There are two major trends for the detection of whale songs
[5]: methods based on temporal or spectrogram matched-
filtering [6], [7] and methods based on pattern recognition
(that find ”all” sounds in the spectrogram, extract features of
those sounds and classify them based on similarity between
the measured features and those learned from multiple
exemplars.) [8], [9]. The proposed method falls into the
second category. The idea is to associate successive calls of a
type in reconstructing an underlying baleen whale song and
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to use this information to isolate species-specific songs which
are overlapping in time.

To transcribe whales songs, the algorithm operates in the
time-frequency domain and follows the different steps of a
pattern recognition algorithm (Sec. III): segmentation, feature
extraction, and classification. Then, classified data are recon-
structed as independent waveforms.

II. DATA

An array of 8 autonomous Ocean Bottom Seismometers
(OBS) was deployed along the Southwest Indian Ridge
(SWIR; Lat. 27.5 − 27.8°S, Long. 65.3 − 66.0°E), from
October 2012 to November 2013, as part of the the RHUM-
RUM (Réunion Hotspot and Upper Mantle - Réunions Unterer
Mantel) seismological experiment (Fig. 1) [10]–[12].

Fig. 1. RHUM-RUM network Southwest Indian ridge (SWIR) ocean bottom
seismometer (OBS) array.

Each OBS was equipped with a three-component seismome-
ter and a hydrophone which recorded data continuously at a
sampling frequency of 100 Hz. Only the data collected by the
hydrophone are used in this work. The frequency response of
the hydrophone is flat in the frequency range of the studied
blue whale vocalizations [13]. The SWIR array covered an
area of 70 km × 40 km with depth varying from 2822 m to
5430 m (Fig. 1).



Marine mammal vocalizations captured in the monitored
frequency range (0-50 Hz) included those of Antarctic blue
whales (ABW) (Balaenoptera musculus intermedia), Mada-
gascar pygmy blue whales (MPBW) (Balaenoptera musculus
brevicauda), fin whales (FW) (Balaenoptera physalus) and an
unknown caller that produces P-calls [14] (or ”spot” call [15]).
A representation of each vocalizations is shown in Fig 2 and
their acoustic characteristics are listed in TABLE I. Blue whale
calls do not always present harmonics (see Fig 2 (c-e)). This
work focuses on tonal signal reconstruction and hence FW
pulses are not considered.

The training dataset comprises data from unit RR48
recorded on May 18th, 2013 (day 138) and from unit RR41
recorded on May 15th, 2013 (day 135), respectively. All blue
whale vocalizations within the data were manually annotated
by drawing a box (describing a call’s begin and end times
and its minimum and maximum frequencies) around the calls
using Raven Pro 1.5.

TABLE I
TONAL SIGNAL UNITS OF BALEEN WHALE SONGS CONSIDERED IN

THIS STUDY AND THE NUMBER OF INSTANCES (N) IN THE
TRAINING DATASET. UNITS’ DESCRIPTIONS (PEAK FREQUENCY fp
AND DURATION; FROM [14]) ARE INCLUDED FOR INFORMATIONAL

PURPOSES.

Species Tonal name N fp (Hz) Duration
(s)

ABW unit A 674 26.2 12
unit C 603 18.7 8

MPBW unit 1 - high 806 33.4 27
unit 1 - low 1133 13.5 27
unit 2 DSa 681 24.4 to 21.6,

mean 23.3
24

? P-call 555 26.9 14
a DS: Down-sweep

III. METHOD

The processing methodology description follows the se-
quence shown in Fig. 3.

A. Tonal signal detection

In a prior study [16], some of the popular tonal signal
detectors from different fields such as speech and musi-
cal signal processing or image processing were compared.
Performances of the instantaneous frequency estimator, YIN
estimator, harmonic product spectrum, cost-function detector
and ridge detector were assessed using relevant metrics to
quantify (i) the effectiveness of these detectors to reliably
retrieve tonal signals and (ii) the quality of the detection results
[17], [18]. The detectors were extensively tested against data
covering a wide range of acoustic contexts and signal to noise
ratio values. The ridge detector [19] performed best [16] and
is therefore chosen for this work. This algorithm relies on
ridge detection, a widely used image-processing technique for
automatic selection and image segmentation.

Fig. 3. Automatic transcription algorithm flow chart.

B. Feature extraction

Tonal signals detected by the ridge detector are character-
ized using different attributes or features. Features have to
facilitate the sorting of the detected tonal signals into different
categories. They should also be simple to measure and not too
sensitive to noise [20]. They are generally closely related to
the application. Based on the work presented in [21] and [5],
the selected set of features measures temporal, spectral, and
amplitude variations. They included -

• average f (Hz),
• center frequency (frequency reached at half of the cumu-

lative signal amplitude; Hz),
• bandwidth (Hz),
• average amplitude and amplitude standard deviation (dB),
• minimal, maximal, average and instantaneous slope

(dB/s) and,
• least concurrent frequency ratio Ω (dimensionless; de-

scribed below).
When multiple (M) tonal signals occur concurrently, ratios
of the average frequencies (f ) are computed for each pair of
concurrent tonal signals, with the higher f of a pair as the
numerator so that the ratios are > 1. For a tonal signal mi

(i ∈ 1, 2, 3, ...,M ), Ωmi
is taken as the least of such ratios

among all pairs mi and mj (j ∈ 1, 2, 3, ...,M and i 6= j). In
the absence of concurrent signals, Ω = 1. Ω provides a way
for quantifying the polychromatic nature of tonal signals and
is expected to be 1.45 (= 26.2

18.7 ) for ABW calls, 2.5 (= 34
13.5 )

for MPBW unit 1, and 1 for for each of MPBW unit 2 DS and
P-calls (no expected concurrent tonals). ω could, however, be
adversely impacted by the simultaneous occurrence of multiple
whale species tonal signals or shipping noise.

C. Classification

1) Dimension reduction: Principal Component Analysis
(PCA) is a tool for feature dimension reduction that aims



Fig. 2. Long-term (31 days, a and b) spectrograms of OBS data recorded in May 2013 (year day Nb. 121 - 151). Long-term spectrograms of OBS RR41 (a)
and RR48 (b). Pink rectangles indicate days annotated for training. Bottom-row panels show spectrograms of (c) 5 ABW Z-calls over 5.2 min, (d) 7 MPBW
calls over 12 min, (e) 5 27 Hz P-calls (or ”spot”calls) over 14.5 min, (f) 23 FW 20 Hz-pulses grouped by 2 or 3 over 6 min, (g) a seismic event lasting over
8.5 min, and (h) ship harmonic noise lasting over 10 hours.

to find mutually orthogonal global directions in data that
maximize variance [22]. When applied to the detected tonals
in the dataset, just two principal components (PCs) describe
98.5% of the total variance.

2) Clustering: In the reduced 2-dimensional space, points
corresponding to call units are grouped together into clusters
using Gaussian mixture models (GMMs). For the training data,
six distinct clusters were observed and they corresponded well
with the six annotated tonal types (see TABLE I. Data points,
during inference, are associated to the closest cluster based on
Mahalanobis distances.

D. Reconstruction

Detected tonal signals associated with a particular class are
used in the reconstruction of a putative independent song.
First, the short time Fourier transform (STFT) X(t, f) ∈ C

of the input signal is calculated. Complex STFT enables the
subsequent reconstruction of a signal without phase losses. A
binary mask Yi(t, f) ∈ {0, 1} for the ith class (prepared by
setting points along all detected TF contours in the ith class
to 1, and 0 elsewhere) is applied to the STFT as

Zi(t, f) = Yi(t, f)�X(t, f). (1)

Finally, the time-series data representing an independent song
is obtained by computing the inverse STFT of Zi(t, f), i.e.,
zi(t) = iSTFT{Zi(t, f)}.

IV. RESULTS

A. Training

Training data projected on the first and second PC are
presented in Fig 4 and color-coded according to the clustering.



PC1 conveys 55.5% of the total variance, 94% of PC1’s weight
is attributed to frequency features (f and center frequency).
PC2 conveys 43% of the total variance, 88% of PC2’s weight
is attributed to the average amplitude.

Fig. 4. Training data projected on the first and second PC. Colors represent
the results of the GMM clustering with precision and recall of TABLE II.

The different tonal signal types are well separated in this
2D representation. Most of GMMs are narrow ellipses except
for the most central one (in green), attributed to MPBW unit 2
DS. The clustering performance is quantified using the metrics
Precision and Recall, defined as

Precision =
TP

TP + FP
(2)

and
Recall =

TP
TP + FN

, (3)

where TP = number of true positive classifications, FP =
number of false positive classifications and FN = number
of false negative classifications. A confusion matrix of the
classification outcomes, along with the per-class Precision and
Recall values, are presented in TABLE II.

The higher values in the confusion matrix occur along
its primary diagonal, indicating high Recall rates. Precision
was the lowest for cluster 5 (86.52%). Overall, the average
Precision and Recall are 97.18% and 96.92%, respectively.

B. Testing: unsupervised application

The complete process described in § III is illustrated using a
recording containing multiple MPBW calls and P-calls as well
as FW chorus and seismic noise (Fig. 5(a-b)). The output of
the ridge detector is shown in Fig. 5(c) where colors represent
the associated data clusters. Detected tonals occurring outside
of the [10 − 40] Hz frequency range and with power (on
the normalized spectrogram) below −60 dB were discarded.
Transcribed and reconstructed waveforms are displayed in
Fig. 5(d). An MPBW song constructed by associating clusters

3 (MPBW unit 1 low) and 4 (MPBW unit 1 high) is displayed
in pink. Another MPBW song consisting of the unit 2 DS only
(cluster 5) is displayed in purple. A song consisting of tonals
from the P-call cluster (6) is plotted in orange.

V. DISCUSSION

Acoustic data used in this study were recorded in a deep-
sea environment with a highly reflective basaltic seafloor [13].
Multiple-path arrivals (echos) caused by the bathymetry makes
it difficult to isolate and extract the direct signal. Measuring
the duration of tonal signals in these conditions can produce
inaccurate estimates that may not be representative of the
actual signal. For example, estimated duration of ABW unit A
calls from the training dataset is 20±12 s, whereas the known
duration is 12 s (cf. TABLE I, [14]). Hence, signal duration
is not considered as a feature (in III-B) for classification
purposes.

In the annotated dataset, a unit and its echos are considered
as one annotated tonal signal with a unique label. Tonal ex-
traction using the ridge detector, however, marks each of such
spectro-temporally disjoint components as independent units.
This leads to fragmentation of the detection corresponding to
a single annotation. For example, on Fig. 5, at 110-120 s
the MPBW unit 2 DS is detected in at least two parts. As
a consequence, the percentages presented in TABLE II are
reflective of the number of fragmented signals associated with
each class and are not representative of the actual number of
annotated signals.

Among the tonal signals included in the analysis, ABW unit
A and P-calls exhibit high similarities in fp and duration (see
TABLE I). For this reason, P-calls could easily be mistaken for
distant ABW unit A [15], [23]. However, PCA and clustering
approaches employed here readily separate the two signal
types (see Fig. 4). As can be seen from TABLE II, only 0.12%
of P-call occurrences were falsely classified as ABW unit A.

MPBW unit 2 DS, is a relatively complex signal in com-
parison to the other units. Also, the frequency range of a
MPBW unit 2 DS is close to that of P-calls and ABW unit A.
When the extracted TF contours are fragmented, subsequent
estimation of attributes (especially f and center frequency) is
less accurate. Given that frequency attributes convey the most
weight on the PC1 axis (§ IV-A), fragmentation significantly
influences the location of the data point on the PCs axes. The
wider spread of the MPBW cluster and the resulting misclas-
sifications can be attributed to fragmentation of the extracted
TF contours. Furthermore, echoes of the trailing segments of
MPBW unit 2 DS might also yield in incorrect classifications
as the corresponding detections can present vastly different
attributes. As an example, the echoes, at ' 340 s and ' 710 s
in Fig. 5, were wrongly classified as P-calls.

The results presented in Fig. 5 indicate the ability of the
automatic transcription algorithm to retrieve and regroup tonal
signals for the reconstruction of independent song tracks.
Interfering noises, such as those of the seismic events, have
been successfully suppressed in the resulting tracks.



TABLE II
CLASSIFICATION RESULTS PRESENTED AS A CONFUSION MATRIX, ALONG WITH PER-CLUSTER RECALL AND PRECISION VALUES

ABW MPBW ? Precision (%) Recall(%)unit A unit C unit 1 low unit 1 high unit 2 DS P-call

C
lu

st
er

N
o.

1 93.28 - - - 2.09 0.12 97.69 93.28
2 - 99.67 - - 0.25 - 99.75 99.67
3 - - 99.92 - 0.25 - 99.75 99.92
4 - - - 99.37 - - 100.00 99.37
5 6.24 0.33 0.08 0.63 97.29 7.87 86.52 97.29
6 0.47 - - - 0.12 92.01 99.36 92.01

Fig. 5. Illustration of the performance of the developed method using a recording (waveform (a) and spectrogram (b)) containing MPBW calls and P-calls,
FW chorus and two strong seismic events (at 180 s and 420 s, respectively). Tonal detector outputs are shown in (c) and color-coded by the classification
results. Waveforms of reconstructed songs are shown in (d).

On the current version of the algorithm, every detection is
assigned to a cluster. To improve its performance in terms of
precision and to increase its robustness to reverberations, a
distance threshold could be applied. It would delimit how far
a detection point can be from any cluster to be considered
for assignment. In this case, tonals with distances above a
predefined threshold could be automatically discarded.

Separation of songs of individuals from the same species
improves the utility of the algorithm in visual and aural
analyses. Consideration of inter-call-intervals [4] in the signal
reconstruction step of the algorithm could help achieve it. To

that extent, other options might be taken into consideration,
i.e., received level comparison and echoes analysis.

Preliminary experiments focused on a short (< 17 min)
recording used for testing which contained MPBW and P-
calls. Work in progress focuses on testing the method on a
new, extended annotated dataset which was also recorded by
the RHUM-RUM OBSs. Using these data we will assess the
performance in more detail and construct confusion matrices
similar to the one presented in TABLE II.

A systematic performance analysis of an automatic tran-
scription algorithm faces two main issues. First, there are



very few ground-truth datasets available and, labeling data is
time consuming. Second, traditional performance evaluation
metrics (e.g., precision and recall) do not suffice in quantifying
the performance of transcription methods. The evaluation of
the performances requires to determine new scoring metrics
to: assess the accuracy of the transcription or, the percentage
of transcribed songs, compare its efficiency on different types
of signals or, evaluate units associations in a multi-individuals
context.

VI. CONCLUSION

To address the issue of the automatic analysis of PAM
recording, this work presents a method for automatic blue
whale song transcription based on the time-frequency rep-
resentation of acoustic signals and pattern recognition. First,
segmentation is realized by the ridge detector then, features
describing tonal signal time-frequency-amplitude information
are extracted. Data are represented on the first two principal
components, describing 98.5% of the total variance. GMM
clustering is applied, performing training performances of
97.2% precision and 96.9% recall. In a preliminary applica-
tion, transcription of a recording of Madagascar pygmy blue
whales and P-calls, polluted with seismic noise, provides sup-
portive results. Future work must focus on (1) improvements
of the algorithm to lower false alarms on broader units such
as MPBW unit 2 DS, (2) separating songs from individuals
of the same species (3) finding scoring metrics, to be able to
evaluate the complete transcription process performances and
realize comparisons to similar algorithms.
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seismometer network around La Réunion, western Indian Ocean,” Ad-
vances in Geosciences, vol. 41, pp. 43–63, 2016.
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