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Abstract—This paper address the use of deep learning ap-
proaches for visual based navigation in confined underwa-
ter environments. State-of-the-art algorithms have shown the
tremendous potential deep learning architectures can have for
visual navigation implementations, though they are still mostly
outperformed by classical feature-based techniques.

In this work, we apply current state-of-the-art deep learning
methods for visual-based robot navigation to the more chal-
lenging underwater environment, providing both an underwater
visual dataset acquired in real operational mission scenarios and
an assessment of state-of-the-art algorithms on the underwater
context. We extend current work by proposing a novel pose
optimization architecture for the purpose of correcting visual
odometry estimate drift using a Visual-Inertial fusion network,
consisted of a neural network architecture anchored on an
Inertial supervision learning scheme.

Our Visual-Inertial Fusion Network was shown to improve
results an average of 50% for trajectory estimates, also produc-
ing more visually consistent trajectory estimates for both our
underwater application scenarios.

Index Terms—Artificial intelligence, Computer vision, Deep
learning, Visual Odometry, Robot navigation

I. INTRODUCTION

Deep Learning has become the "Holy Grail” approach for
visual based classification tasks. Most of the renown novel
methods for computer vision classification tasks [1][2][3][4]
are based on deep learning architectures (e.g. neural network
approaches) and deep learning is becoming ubiquitous in most
of today’s Computer Vision applications.

Based on the significant improvements on accuracy and
performance obtained in visual detection and classification
tasks, novel deep learning approaches for other applications
such as camera pose estimation and visual motion estimation
(i.e. Visual Odometry (VO)), started to surface, laying the
groundwork for the acquisition of robust reliable data that
can be used to feed visual SLAM systems. Motion estimation
for visual based navigation applications is one of the key
challenges in Computer Vision that is undergoing extensive
research in the field of Robotics research, but also in the
context of autonomous driving applications. This is partly due
to the development and proliferation of more powerful and

Fig. 1. UX-1 Robot photo at Kaatiala Mine courtesy of UNEXTMIN project

cheaper GPU alternatives, which has prompted the surge of
data-driven methods such as deep learning to also tackle VO
tasks. In recent years, learning based VO has been drawing
significant attention, as it can combine powerful feature rep-
resentation capability with increased robustness especially in
more complex scenarios.

One of most complex scenarios is the underwater environ-
ment, where visual based navigation methods tend to fail or
have lackluster performance due to the lack of appropriate
lighting conditions, water turbidity, backscattering effect, lack
of image texture and vignetting effect. In this work, we
benchmarked deep learning egomotion estimation methods
performance in underwater motion estimation scenarios using
indoor pool image sequences but also real operation mission
scenarios from the UNEXTMIN UX-1! [5] robot. The dataset
was acquired while the robot was in operation exploring and
mapping flooded caved mines.

Our contribution in this paper is twofold: (i) assessment
and evaluation of deep learning motion estimation frameworks
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on the underwater context; (ii) a novel Visual-Inertial Fusion
Network that manages to improve around 50% upon global
trajectory estimate errors

The remaining of the paper has the following organization:
Section II contains a review of relevant work in the deep
learning for computer vision research field, with the focus
placed on VO tasks. In section III, we describe the different
dataset scenarios. In section V we describe the design of the
novel Visual-Inertial Fusion Network approach. Experimental
Results and training methodology are presented and discussed
in section VI. Lastly, in section VII, some conclusions are
drawn from the obtained results and future research directions
in the scope of this work are layed out.

II. RELATED WORK

Usually, VO taxonomy divides geometric based Visual
Odometry methods into feature-based or direct/dnese methods
for VO estimation. Both approaches have made great success
in the past decade [6]. However, they still face many chal-
lenging issues, in particular when being deployed in large
scale robotic applications and facing complex environment
application scenarios.

In recent years, deep learning methods have risen to pre-
dominance by showing good capability for cognitive and
perceptual tasks in computer vision applications, whether at
analyzing unknown features, capturing image depth or even
perceiving egomotion between image frames. Thus, the de-
velopment of learning-based applications aimed at improving
visual-based robotic navigation has had a significant surge as
of late.

We start our related work with a brief review of Visual
Odometry implementations running on top of deep learning
architectures by analyzing key contributions and nuances be-
tween different deep VO estimation methods, further dividing
the state-of-the-art into depth, global pose and egomotion
estimation.

A. Depth Estimation

Depth estimation methods take advantage of camera dis-
placement or difference in the apparent position of an object
viewed along two different lines of sight to estimate depth.

Early work by Eigen et al [7] proposed a supervised method
for depth estimation with a ground-truth depth map and a
scale-invariant error as a cost function for training. The work
was further extended by further integrating convolution neural
networks improving accuracy and efficiency on both segmenta-
tion tasks and depth estimation. CNN-SLAM [8] is a proposed
monocular SLAM system that relies on convolutional neural
networks solely to estimate depth, recovering pose and graph
optimization from conventional feature-based SLAM. This
approach demonstrated that deep learning architectures can
also work hand-in-hand with vision-based systems, improving
upon overall robustness and accuracy of said algorithms.

Unsupervised schemes have recently emerged, also posing
as viable alternatives. Garg’s idea [9] was to use CNN’s to
predict the depth map for the left input image, reconstructing

the left image from the right image and using the photometric
reconstruction error (eq. 1) between the original left image /
and the new synthetized left image I’ in the training phase of
the algorithm.

E=Y |- (1)

SfMLearner [10] is a solution that established an influential
framework for Deep Learning for Visual Odometry research.
It uses a monocular image sequence in order to estimate
depth and pose simultaneously in an end-to-end unsupervised
manner, through enforcing geometric constraints between im-
age pairs in the view synthesis process. SfMlearner++ [11]
improved upon the results in both depth and pose estimation by
using the Essential matrix, obtained using Nisters Five Point
Algorithm [12], to enforce epipolar constraints on the loss
function, effectively discounting ambiguous pixels.

GeoNet [13] is a similar approach, a jointly unsupervised
learning framework for monocular depth, optical flow and
egomotion estimation that decouples rigid scene reconstruction
and dynamic object motion, making use of this knowledge to
further tailor the geometric constraints to the model. Vijaya-
narasimhan et al.[14] presented SfM-Net, innovating through
adding motion masks to photometric losses to jointly estimate
optimal flow, depth maps and egomotion.

B. Global Pose Estimation

Localization is a crucial component for autonomous systems
development, since it enables a robot to determine where it is
on an environment, which serves as a precursor to any type
of action execution or planning.

The main purpose of data-driven pose estimation is to
estimate pose without explicitly modeling the camera motion.
PoseNet [15] was the first instance of CNN usage for pose
estimation, starting from a supervised scheme with a 6-
DoF pose groundtruth. Making use of geometry to design
meaningful constraints to the loss function [16] proved to
yield significant improvements to method performance and
accuracy. This method showed very robust performances in
relocalization tasks and was further extended to support both
color and depth inputs, improving upon its accuracy in chal-
lenging environments, such as night-time.

The application of deep RCNN’s architectures to Visual
Odometry task have been gaining favor in the past years, as
them allow for bypassing the need for almost all blocks in
the conventional VO pipeline, allowing for end-to-end pose
inference. The Recurrent Neural Network component can be
used for exploring either temporal dynamics or spatial analysis
of image sequences, thereby reducing the uncertainty of pose
estimation and generally improving upon method performance.
The introduction of LSTM units to neural network design as
showcased in [17] proved to improve results in localization
tasks making use of structured correlation in feature space
using LSTM units.



TABLE I
RELATED WORK IN DEEP LEARNING FOR COMPUTER VISION
APPLICATIONS

Algorithm Year  Supervised Depth  Global Pose  Egomotion
Eigen et al.[7] 2014 v v
PoseNet[15] 2015 v v
DeepVO [18] 2017 v v
SfMLearner [10] 2017 no v v
PoseLSTM [17] 2017 v v
UnDeepVO [19] 2017 no v
CNN-SLAM (8] 2017 v v
VINET [20] 2017 no v
VLocNet [21] 2018 no v v
GeoNet [13] 2018 no v v

C. Egomotion Estimation

Building upon the success of absolute pose estimation, the
egomotion between consecutive image frames can also be
estimated with the use of deep neural architectures inspired by
geometric models. The key principle is that for the egomotion
estimation task we are interested in capturing the motion
undergone by the camera system between consecutive images
rather than just determining the position and attitude of the
observer. FlowNet [22] and its successive iterations garnered
immense attention as a reliable deep learning framework for
learning optical flow and paved the way for early egomotion
estimators. Wang et al. proposed a monocular visual odometry
system called DeepVO [18], which trains a RCNN to estimate
camera motion in an end-to-end fashion, inferring pose directly
from a sequence of raw RGB images in a video clip while
bypassing all usual modules in the conventional VO pipeline.
The advantage of such approach is to simultaneously factor
in both feature extraction and sequential modelling through
combining CNN’s and RNN’s.

As labeling data in large scale significantly hinders the
application of supervised learning methods to robotic ap-
plications, Li et al proposed UnDeepVO [19], a monocular
system that uses stereo image pairs in the training phase for
scale recovery. After training with unlabeled stereo images,
UnDeepVO can simultaneously perform visual odometry and
depth estimation with monocular images.

Valada et al [21] proposed a novel architecture that en-
compasses both global pose localization and a relative pose
estimation, jointly regressing global pose and odometry and
learning inter-task correlations and shared features through
parameter sharing. This method is denoted as Deep Auxiliary
Learning.

Visual Odometry methods are particularly sensitive to ro-
tation errors, as small early drifts can have a large influence
on final trajectory pose estimates. Peretroukhin [23] proposed
HydraNet, a deep learning structure aimed at improving atti-
tude estimates, able to be fused with classical visual methods.
Through regressing unit quaternions, modeling rotation uncer-
tainty and producing 3D covariances, HydraNet manages to
improve visual algorithms at predicting 6-DoF pose estimates.

Another application Deep learning architectures are cur-
rently being tested on is sensor fusion. VINet [20] is a
proposed framework that fuses pose estimates from DeepVO

[18] with inertial data, showing comparable performance to
traditional fusion systems. The same method was also adopted
to fuse other kinds of information such as magnetic sensors,
GPS, INS or wheel odometry [24] [25]. Sensor fusion can be
easily incorporated into deep learning architectures and jointly
trained end-to-end with pose regression, thus making a poten-
tially interesting solution for Visual Odometry applications as
it can be used for a wide variety of purposes (e.g. recovering
absolute scale on monocular camera systems).

In table I, a brief comparison of state-of-the-art methods is
presented, detailing the tasks they perform.

III. UNDERWATER VISUAL DATASET

Deep learning methods usually require vast amounts of
data in order to properly train its neural architectures. This
is particularly true in robotic applications, since autonomous
systems can operate in very complex environments, often
under extreme conditions. As so, the availability of large scale
datasets is crucial for further development of deep learning
algorithms and its respective generalization ability, therefore
improving upon its robustness when being deployed in full-
scale large complex environments.

In the underwater context, there are not many publicly
available large datasets and there is none widely regarded as a
comprehensive benchmark for method evaluation. In the scope
of this work, we also wanted to assess method performance
using one of CRAS robotic solutions, namely the UNEXMIN
UX-1 robot. With this in mind, we developed a deep visual
underwater dataset, an underwater focused dataset collected
with the UX-1, tailored for visual odometry method imple-
mentation and evaluation, with which we pretend to assess
performance of state-of-the-art deep learning architectures for
VO estimation in different underwater scenarios. In Fig. 2, we
can observe example images of our dataset sequences, that
showcase the different environments included in our dataset.

Fig. 2. Dataset image examples

In this section, we are discussing in detail the data acqui-
sition process, specifically describing the UNEXMIN UX-1
robot and all the technology contained within it, while provid-
ing related remarks about the image acquisition methodology,
specifically the camera setup, the reasoning and assumptions
of the process.



A. Data acquisition methodology

As previously mentioned, the dataset was constructed using
data acquired with the UX-1 robot. This robot is equipped
with a plethora of different sensors, including 5 cameras. In
this work, and especially since the UX-1 does not have a
great overlay of camera fields-of-view, we are focusing on
monocular visual methods, and as so, we choose to analyze
the left camera system, with the goal of estimating robot pose
in the central reference frame (i.e. pose estimates in the camera
system reference frame has to be later transformed to the
robot body reference frame). Groundtruth data is generated
by the navigation module of the UX-1 software, a filtered
calibration of sensor fusion from multiple local sensor sources
(IMU, Doppler Velocity Logger, Structured Laser System,
etc), progressively refined through multiple operation missions
in complex settings and extremely challenging operational
conditions.

In the scope of this work, we are working with the underly-
ing assumption that this navigation data corresponds exactly to
the real robot pose, which is not easily verifiable in operational
mission scenarios. However, it can be asserted, with relative
confidence, that this data represents a close approximation
of the real robot position and can, therefore, be used as
groundtruth for our use case. The groundtruth data file consists
of a .txt file where each line contains 8 scalars, representing a
timestamp and 6-DoF poses with a 3D translation vector and
an orientation quaternion.
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Fig. 3. UNEXMIN UX-1 robot description

B. Dataset Scenarios

For the purpose of constructing a complete and thorough
dataset, we utilize two different application scenarios, which
pose different types of problems to visual-based methods:

1) The CRAS pool sequence depicts a fully known envi-
ronment, ideal for calibrating some aspects of visual-
based navigation, since all navigation information is
fully verifiable. However, it is a rather non feature

rich environment with lack of appropriate ilummination
conditions, which complicates visual-based navigation.

Fig. 4. CRAS indoor pool

2) The Urgeirica uranium mine is a decommissioned
flooded mine in Viseu, Portugal. It is mostly composed
of vertical shafts that lead to 15-30m wide galleries. It is
a real operational mission scenario for the UX-1, which
was tasked with exploring and mapping the mine.

Fig. 5. Urgeirica mine entrance

IV. DEEP LEARNING APPROACHES FOR VISUAL-BASED
ROBOT NAVIGATION

A. Egomotion Estimation

In the scope of underwater robotics research, and specifi-
cally in the context of our work, the most interesting appli-
cation we are interested in exploring are unsupervised deep
learning frameworks for egomotion estimation.

For the purpose of estimating motion dynamics, we are
turning our attention to two similar state-of-the-art deep con-
volutional visual frameworks: SfmLearner [10] and GeoNet
[13]. Though both frameworks also estimate monocular depth
(and optical flow in the case of GeoNet), we are only focusing
on camera motion estimation CNN’s.

SfMLearner[10] is an unsupervised learning pipeline for
depth and egomotion estimation. The unsupervised objective is
fulfilled based on the following intuition: given knowledge of
camera self-motion within a sequence of images and the depth
of every pixel in those images, we can gain an unsupervised
target by performing view synthesis. As mentioned above, we
are interested in evaluating Zhou’s PoseNet, the SfMLearner
framework component responsible for regressing 6-DoF pose
estimates. The PoseNet architecture is essentially a temporal
convolutional network which processes a sequence of n images



Fig. 6. Representation of the SfMlearner PoseNet, the framework component
responsible for regressing 6-DoF pose estimates. It consists of 7 blocks of
convolutional layers followed by ReLU activations, outputting a 6-dimensional
vector that comprises a 3D translation vector and euler angles orientation
representation.

by predicting relative transformation from the center image of
the sequence (the image at the central position of the snippet,
as shown in Fig. 7) to the other images in the sequence,
outputting a n-I transformation vector composed of a 3D
translation vector and a Euler angle orientation vector for each
transformation.

Fig. 7. CRAS pool 5-sequence length snippet:

The network itself is a convolutional regressor model with
seven convolutional layers with stride-2 followed by ReLU
activations, leading to a final linear convolution that outputs
the aforementioned 6 x (n-1)- dimensional channels. On top on
this network, an “explainability” mask is used to downweight
the loss on image patches undergoing motion external to the
cameras motion (e.g. a car or pedestrian moving in the frame).

GeoNet[13] is a jointly trained end-to-end unsupervised
learning framework for monocular depth, optical flow and
egomotion estimation. Specifically, this framework focuses on
extracting geometric relationships in the input data by sepa-
rately considering static and dynamic elements in the scene.
Significant performance gains have been reported, mostly
due to increased robustness towards texture ambiguity and
occlusions in the scene.

The framework is composed of two stages: the Rigid
Structure Reconstructor and the Non-rigid Motion Localizer.
The first stage is tasked with understanding the scene layout
and structure and it consists of two sub-networks, i.e. the
DepthNet and the PoseNet. The second stage concerns itself
with dynamic objects in the scene and it utilized for the
purpose of refining imperfect results from the first stage due

to motion external to the camera motion, as well as help deal
with high pixel saturation and extreme lighting conditions.
Similarly to SfMlearner, view synthesis at different stages
works as a synthetic supervision for the unsupervised learning
architecture, with image appearance similarity enforcing geo-
metric and photometric consistency within the loss function.
The most relevant part of the framework in the scope of our
work is the Pose Net, which consists of 7 convolutional layers
followed by batch normalization and Relu activation (see Fig.
8). The prediction layers outputs the 6-DoF camera poses, i.e.
translational vectors and orientation Euler angles.

Fig. 8. Representation of the GeoNet PoseNet, the framework component
responsible for regressing 6-DoF pose estimates. It consists of 7 blocks
of convolutional layers followed by ReLU activations and additional batch
normalization layers, outputting a 6-dimensional vector that comprises a 3D
translation vector and euler angles orientation representation.

V. VISUAL-INERTIAL FUSION NETWORK

Regardless of the algorithm, traditional monocular VO so-
lutions are unable to observe the scale of the scene and are
subject to scale drift and scale ambiguity. This is not different
for deep neural architectures, as reported in the previously
studied frameworks. The most common approach for pose
optimization in the literature is to fuse visual and inertial data
as a way to enforce global scale consistency with respect to
the groundtruth data and therefore it would make sense to
investigate analogous deep learning approaches to perform this
task.

In this work, we propose a Recurrent Neural Network ar-
chitecture anchored in a supervised learning scheme whereby
we use filtered IMU readings as a supervision for 6-DoF pose
estimate optmization.

The input space of this network are the concatenated
egomotion predictions of both SfmLearner and GeoNet, i.e.
global trajectory estimates in the robot central body frame. For
this purpose, and due to deep learning architectures requiring
large amounts of data to converge to a robust model, we had
to run multiple predictions from both frameworks so as to
synthetize a dataframe dataset.

The network itself consists of stacked LSTM units work-
ing with progressively smaller time step lags leading to a
multilayer perceptron that regresses the optimized trajectory
estimate. The goal is to process the data as a sequence-to-



sequence problem, optimizing the input trajectory estimates
to a more globally consistent trajectory.

The fundamental assumption driving this architecture is
that the output space of the optimized trajectory estimate
lie in a manifold much smaller than 6-DoF space. Implicitly
constraining the output prediction space to a minimization of
the mean square error between visual and inertial data helps
to avoid the curse of dimensionality.

For loss function design , the intuition was that we needed
to make use of the quaternion parametrization to penalize
rotation errors in a meaningful way. In this light, we decoupled
the translation and rotation components and formulated a loss
function that takes the mean squared error for translation and
the quaternion distance between estimate and groundtruth in
the SO(3) group.

loss = \/Z(E§ +EZHED+ D g —q @)

where F, ., represents the computation of distance between
estimate and groundtruth position. Quaternion distance is
computed as the norm of the difference between estimate
and groundtruth quaternions. In addition, we constrained the
equation to take into account the fact that ¢ and -g encode the
same rotation, only considering the smaller of the two possible
distances in the loss function calculation.

VI. EXPERIMENTAL RESULTS

A. Training Procedure and Hyperparameter Details

In this section, we focus on the experimental results for
egomotion estimation frameworks. In addition, we will show
the impact of the Visual-Inertial Fusion Network so as to
optimize the trajectory estimate and correct inherent VO drift
on the data generated by the previously studied egomotion
estimation frameworks. SfMLearner and Geonet share the data
preprocessing step whereby the input image sequence is split
into 5 sequence length snippets (see Fig. 7). In conjunction
with camera intrinsic calibration and image timestamps, the
416x128 snippets were fed to the frameworks and the neural
networks were trained using tensorflow[26] running on a
CUDA enabled Nvidia GTX 1080. It is also worth noting that
a post-processing step was implemented in order to recover
full concatenated trajectory from the 5-snippet length predicts,
so as to analyze also the global trajectory errors. Some
context finetuning was performed, empirically adapting the
network to penalize heavier errors in rotation as large global
trajectory errors were being introduced due to early rotation
errors unaligning the pose estimates with the groundtruth,
thus accumulating significant drift. For the Visual-Inertial
Fusion Network on the other hand, and given that there was
no prior knowledge about how to tune a pose optimization
network, we adopted a grid-search learning scheme to sweep
multiple combinations of hyperparameters and return the one
that converges to smaller loss values. This is only feasible in a
short timeframe because we are working with low dimensional
data (i.e. dataframes instead of high resolution imagery) but

for this application, it is perfectly suited for finding an optimal
solution for hyperparameter tuning.

B. Results

Results on our dataset are presented in two different forms.
First, we evaluate in a similar fashion to how both authors
presented them, by computing estimate errors within the
previously mentioned 5-frame sequences, with scale correction
optimization and alignment with groundtruth data, so as to
resolve scale ambiguity and minimize the impact of early drift
accumulation errors.

TABLE II
ABSOLUTE TRAJECTORY ERROR (ATE) EVALUATION

‘ KITTI seq 09 KITTI seq 10 CRAS Pool Urgeirica Mine ‘
‘ SfMLearner  0.016 £0.009 0.013 £0.009 0.016 +0.006  0.028 £ 0.086 ‘
‘ GeoNet 0.012 £0.007 0.0124+0.009 0.012+0.006 0.026 £ 0.081 ‘

In the remaining of this section, we will present and
discuss the results considering the full concatenated trajectory,
thereby escaping the snippet representation and recomputing
errors with respect to translation for all sequence trajecto-
ries under analysis. For the sake of coherent representation
we will present the trajectories after the application of a
post-processing step denoted as Umeyama alignment [27],
commonly used in VO quantitative trajectory error metrics.
It consists of a least-squares estimation of transformation
parameters translation, rotation and scale between estimates
and groundtruth pose data.

——— groundtruth
o ours
GeoNet
1 SfMlearner

-2

—6

-7

Fig. 9. Results for the CRAS pool sequence: trajectory estimates against
groundtruth data

As it can be observed in table III, our Visual-Inertial Fusion
Network was able to synthesize the best results for global
trajectory estimation with or without any type of preprocessing
step. It performs on average around 40% better for the CRAS
pool sequence while showing an average improvement of
around 55% in the urgeiria mine sequence. It is important
to note, however, that both SfMlearner and GeoNet are un-
supervised frameworks, and the devised solution leverages a
supervised learning scheme.



TABLE III

RESULT COMPILATION FOR ABSOLUTE POSE ERROR W.R.T. TRANSLATION

Absolute Pose Error (APE)
“raw” comparison scale-corrected SIM(3) Umeyama aligment
Avg.Error RMSE (m) Avg.Error RMSE (m) Avg.Error RMSE (m)
SfMlearner 3.301£2.049 3.996 2.755+£1.573 3.049 0.731£0.440 0.905
CRAS POOL GeoNet 28.739+14.613 29.912 20.846+6.687 20.087 5.345+1.112 5.475
ours 2.329+1.781 2.877 1.380+1.259 1.380 0.570+1.005 0.637
SfMlearner | 52.709+£1.199 52.461 20.354£3.366 19.129 0.7208+0.584 1.158
Urgeirica Mine GeoNet 55.392+2.728 56.096 22.043£1.041 22.475 0.839+0.543 1.077
ours 46.269+2.928 47.973 4.177+0.219 4.227 0.168-£0.106 0.212
6 — ——- groundtruth o e - -~ - —
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for egomotion estimation can be analyzed through different
perspectives, leading to the following conclusions:

Fig. 10. Results for the CRAS pool sequence: trajectory estimates against
groundtruth data decoupled by translational component

10.0
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y f’m\

Fig. 11. Results for Urgeirica Mine sequence: computed trajectory estimates
against groundtruth data

o First of all, as it can be observed in table II, we were

able to produce similar results to those presented in the
literature only for our CRAS pool sequence. It is still
a good indication that it was possible to achieve such
results in the underwater context, however, it is important
to note that it was only true for our fully known structured
environment. Real mission operational scenarios like the
urgeiria mine sequence pose greater challenges to visual-
based motion estimation algorithms and that is reflected
on higher magnitude error rates.

Secondly, it is possible to observe that both networks per-
forms fairly better at regressing translational displacement
than rotational movement. Rotation, and in particular pure
rotations, are not handled well in any of the studied
methods.

In accordance to the expectations, and in agreement
with both authors result presentation, pose estimates
only present persuasive results with a post-processing
step. The need for scale correction is a consequence of
the use of monocular camera setups, but some type of
groundtruth alignment algorithm is also required.



o Though relative motion estimates seem at first glance
to show potential due to small average error rates, their
concatenation onto the full trajectory reveals that the drift
accumulation results in poor trajectory shape mimicking.
In conclusion, there is still room for improvement when
it concerns to global pose estimation derived from unsu-
pervised egomotion estimation frameworks.

e We introduced a visual-inertial fusion network, anchored
on a recurrent neural network architecture with an inertial
supervision learning scheme. It was shown to improve
results an average of 50% for trajectory estimates, also
producing more visually consistent trajectory estimates
for both our application scenarios. This approach can
later be integrated with egomotion estimation frameworks
in an end-to-end fashion, leading to more accurate and
reliable robot trajectory estimates.

VII. CONCLUSION
A. Summary

In this paper, the focus was placed on deep learning
approaches for visual-based robot navigation, with particular
interest on evaluating the potential for learning-based visual
method application on complex underwater operational mis-
sion scenarios.

Firstly, a review of state-of-the-art deep learning approaches
for Visual Odometry applications was conducted, detailing the
progress in performance and accuracy deep learning methods
have managed to achieve in recent years, as well as its
shortcomings. It was concluded that there was close to no
information about the performance of deep learning methods
for VO estimation in underwater context scenarios, and would
therefore be particularly interesting and relevant to assess
the performance of some of the most renown state-of-the-art
algorithms in operational mission underwater scenarios.

The next step was to construct a comprehensive dataset
encompassing different texture environments and providing
different types of challenges to visual-based pose and/or mo-
tion estimation. As reported in III, this was achieved through
the use of data acquired with the UX-1 robot, and presents
three novel image sequences that all pose different challenges
to visual-based VO estimation.

In order to access the performance of learning-based visual
methods on our dataset image sequence, we focused on two
different tasks: absolute relocalization and egomotion estima-
tion. We came to the conclusion that relocalization algorithms
have an overall good performance across different scenarios,
but lack generalization ability when exposed to more than one
different mapping during training. It is reasonable to assume
that we could achieve good performance from the application
of this methods in real robotic solutions, though real time
testing was not performed and thus validation is still required.

As for egomotion estimation, the results were not as ac-
curate and reliable as expected. Relative motion estimates
of state-of-the-art algorithms show small errors in translation
yet rotations still pose some challenges these methods are
not able to overcome. Analyzing concatenated trajectories, we

can easily observe that pure rotations and accumulated drifts
lead to failures in pose estimation, thus making the algorithm
unable to provide consistent and reliable estimates, as required
by real robotic systems.

In section V, we again address the issue of the aforemen-
tioned poor performance of egomotion estimation methods,
presenting a possible solutions for obtaining the global pose
optimization objective. The proposed solution consists of a
Visual-Inertial Fusion Network, aimed at improving global
pose estimates through an inertial supervision learning scheme.
This supervised architecture proved to significantly improve
results on global pose estimation, with around 50% better
error rates.

In this work, real-time implementation of deep learning
algorithms was not addressed, mainly because the UX-1 does
not possess any type of GPU hardware, therefore rendering
any conclusion from on board implementations non-viable. In
addition, and although the robot possesses multiple cameras,
visual stereo implementations are significantly hard to design
for this particular robot, due to non-overlapping camera fields-
of-view.

B. Future Work

The following future work in this research scope is sug-

gested:

o Integration of visual-inertial fusion within end-to-end
deep learning for robot navigation pipelines. Further
study of inertial integration without losing the unsuper-
vised learning objective.

o Assessment and testing of visual stereo implementations
on top of deep learning architectures for the underwater
context. This work focused on monocular camera setups
mostly due to the UX-1 design constraints, yet it would be
interesting to investigate the performance of deep learning
architectures also for the stereo use case.

o Real-time implementation and testing of deep learning
architectures for both relocalization and egomotion tasks
for the underwater context. The low budget recommended
option would be using a Nvidia Jetson Nano and Ten-
sorRT for fast inference implementation.
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